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The analysis of progressive deformation in rock analogues 
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Abstract--Two-dimensional deformation experiments using analogue materials such as octachloropropane 
and camphor have proven to be a powerful tool in the investigation of microstructural development, since they 
make it possible to observe the specimen throughout its deformation history. The addition of dispersed marker 
particles makes it possible to trace the movement of material points during deformation. From this infor- 
mation the flow and deformation can be interpolated for any point within the specimen at any time. The 
geometry of the flow and deformation can then be visualized in the form of grids, contour-plots, strain ellipses 
and other methods. 

Despite this apparently ideal setting for studying flow and deformation, the need to use marker particles to 
trace material points introduces unexpected problems in the analysis. We present a computer program to 
analyse the movement of marker particles. Digitization of the positions of the particles is improved by the use 
of video input and semi-automatic digitization. The use of polynomials to describe the complete path of 
marker particles and least-squares best-fit solving improves the analysis of the data. 

INTRODUCTION 

THE development of microstructures during ductile de- 
formation in rocks can be modelled with crystalline 
rock analogues such as octachloropropane and cam- 
phor that exhibit crystal-plastic behaviour at room tem- 
perature. These materials can be deformed between 
thin glass plates in a rig that can be mounted on a 
microscope stage (Means 1977, 1989 and references 
therein). In this way a deforming specimen can be 
observed throughout its deformation history. Ana- 
logue experiments are becoming increasingly popular 
for research and teaching purposes because they are 
the only technique available to structural geologists in 
which the processes and kinematics of deformation can 
be directly observed at the grain scale. They are useful 
tools for demonstrating the principles of recrystalliza- 
tion, twinning and shear zone development. 

One of the main aims of analogue experiments is the 
determination of the kinematics of deformation, which 
can then be linked to the observed microstructural 
phenomena. Progressive deformation can be studied 
by tracking the relative displacements of material 
points. It is not practical to inscribe a grid on the thin 
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specimens of, for example, camphor as is the practice 
with clay or wax experiments (e.g. Mancktelow 1991) 
and grain boundaries cannot serve as marker particles 
since they migrate through the material (e.g. Urai et al. 

1986). Therefore small opaque marker particles are 
dispersed through the material (grinding power (SIC), 
~5-30 pm in size). These particles move passively 
along with the deforming material (Means 1980, Jessell 
1986). 

Micrographs or video-images can be taken at specific 
intervals during an experiment. This produces a series 
of images with dispersed dots (Fig. 1). Two steps have 
to be taken from this stage to produce, for instance, 
plots showing the distribution of finite strain for a 
deformation episode between two photographs: 

(1) digitization of the positions of each marker at 
each recorded stage; 

(2) actual analysis of the kinematics of deformation. 
The first step can be rather difficult if performed 

manually. Marker particles have to be as small as poss- 
ible in order not to influence the experiment, and 
therefore recognition of individual marker particles is 
difficult. Pattern recognition is therefore used to iden- 
tify individual marker particles from a recognizable 
group. 

The second step is analogous to the analysis of defor- 
mation using an inscribed grid (e.g. Mancktelow 1991). 
A difference is that our marker particles are randomly 
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distributed. An imaginary grid has to be superposed on 
the specimen. For each grid node the deformation is 
then analysed using the displacements of the marker 
particles nearest to that node. A simple method for this 
is described by Jessell (1986). It is based on the prin- 
ciple that if the positions before and after deformation 
of three marker particles are known, the position 
gradient tensor can be exactly calculated if defor- 
mation was homogeneous in the triangle with the three 
marker particles at its corners. The minimum number 
of three marker particles is derived from the fact that a 
tensor can only be reconstructed if changes in position 
of at least two points with respect to a third point are 
known. A third point is the base of the reference frame 
in which the tensor description, is calculated. This 
method, however, is very sensitive to inevitable errors 
in digitized marker-particle positions (ten Brink 
unpublished data). A more sophisticated approach is 
to use a least-squares approximation, which is less sen- 
sitive to these errors. It may also be desirable to know 
the material flow in the specimen rather than the finite 
deformation after a certain deformation increment. 
For this purpose velocities of marker particles have to 
be used instead of displacements. 

In this paper we first discuss the basic principles of 
how to derive the position gradient tensor or velocity 
gradient tensor and then we present a number of ways 
to visualize the results. At the end we discuss one 
application of the method: investigation of grain- 
boundary migration. Illustrations are derived from a 
typical experiment with polycrystalline norcamphor 
(C7HmO), deformed under pure shear conditions at 
45°C (~0.85 homologous temperature) (Figs. 1, 3, 6 
and 7). 

We have developed a program that automates the 
major part of the marker-particle digitization and per- 
forms the deformation analysis (see Appendix). It is 
specifically designed to analyse finite deformation and 
flow using randomly distributed marker particles. The 
latter is however not a requirement and it can be used 
to analyse inscribed grids as well. 

T H E  M E T H O D  

Basic principles 

In any deforming body, material will be moving with 
respect to an external reference frame. We need to 
distinguish between deformation, which is the field 
describing the finite changes in position of material 
points, and flow, which is the field describing the in- 
stantaneous velocities of these points. If the position of 
a material point after deformation x' (see Table 1 for 
list of symbols) is assumed to be a function of its 
original position (x) (e.g. McKenzie 1979, Spencer 
1980, Passchier 1988, Means 1990), then: 

x' = Fx  + d,  (1)  

with F being the position gradient tensor and d the 

rigid-body translation vector. The displacement vector 
Ax of a material point is a function of x as follows: 

Ax = x' - x = ( F - l ) x  + d,  (2)  

where I is the identity-tensor. Deformation is homo- 
geneous if F does not vary as a function of x. If v is the 
velocity of a material point at position x, the velocity 
gradient tensor (L) and the rigid body velocity vector ! 
can be defined in a similar way (Spencer 1980, Pas- 
schier 1987): 

v = Lx + l, (3) 

Again, if L does not vary as a function of x, flow is 
homogeneous. In reality deformation or flow will 
rarely be homogeneous and the aim of the analysis is to 
find the distribution of F, d, L and l in the deforming 
material by solving equations (1)-(3). 

The marker particles represent a set of material 
points of which the positions x are known at specific 
moments during progressive deformation when their 
positions were recorded on micrographs or on video 
(Fig. 2a). This is the basic set of data, which can be 
used to solve equations (1) or (2). The velocities of 
marker particles, needed to solve equation (3) are 
however not known, but they can be approximated in 
the following way. Assuming that the actual paths of 
the marker particles are smooth, the positions of these 
marker particles at any time t can be interpolated, by 
describing the position of each marker as a function of 
time: 

x = x(t ) .  (4)  

We have chosen a polynomial function (Fig. 2b), treat- 
ing position in each direction (i = 1,2) separately: 

N 

xi(t) = (c,,)it". (5) 
n = 0  

The order N of the polynomials can be adjusted to the 
complexity of the paths and the number of time- 
increments recorded. The N + 1 coefficients (cn)jn 
each polynomial can be calculated with a least-squares 
best-fit method. The advantage of using polynomials is 
that a limited set of coefficients defines the whole path 
for each marker particle. These coefficients can be 
calculated once and stored in memory or on file for 
later use. Another advantage of using a smoothed path 
to describe the positions of marker particles is that 
errors in digitizing the positions of marker particles can 
be smoothed, if a suitable order of the polynomial is 
chosen. Now that we have the position of each marker 
as a function of time, the velocity of each marker 
particle at any time can be calculated by taking the 
derivative with respect to time at the desired time, 

N 

v (t) = ( c , , ) i r  (6) 
n = l  

To solve equation (2) (describing the deformation) 
one needs data on the position of marker particles at 



P r o g r e s s i v e  d e f o r m a t i o n  in  a n a l o g u e  m o d e l s  
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Fig 1. Micrographs of deforming norcamphor,  taken at t = 0 (a), 33 (b) and 66 (c) rain. Shortening is in the E - W  
direction. Scale bar is 0.5 mm. Small dots are SiC marker particles. The displacement of the marker particles can be used 
to determine deformation parameters. The five solid dots are marker particles that are also drawn on the plots in Figs. 6 
and 7. Note the dynamic recrystallization, especially at the right, where strain localization occurs. 
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Table 1. List of symbols. Vector symbols are written in lower case 
bold and tensor symbols in upper case bold 

x Position vector of material point before deformation incre- 
ment 

x' Position vector of material point after deformation increment 
Ax Displacement vector of a material point 
v Velocity vector of material point 
F Position gradient tensor 
L Velocity gradient tensor 
i Identity tensor or Kronecker delta Oij 
d Rigid-body translation vector 
! Rigid-body velocity vector 
t Time 
c Polynomial coefficient 
N Polynomial order 
W Vorticity (Means et al. 1980) 
S Spin 
Wk Kinematic vorticity number (Truesdel11953) 

two times. These can be the times of digitization, or 
any chosen times if marker particle paths are calculated 
with equation (5). To solve equation (3) (describing 
flow), the positions of marker particles at a certain 
time and their velocities have to be known. These data 
have to be derived from equations (5) and (6). 

In the case of both deformation and flow, a set of 
vectors (Ax or v) at a set of points (x) are known. Using 
t h e s e  d a t a ,  e q u a t i o n s  (2)  o r  (3)  h a v e  to  b e  s o l v e d  fo r  

t h e  w h o l e  a r e a  o f  i n t e r e s t .  A s  t h e s e  e q u a t i o n s  a r e  

(a) 

(a) 

(b) 
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Fig. 2. The approximation of the path of a marker particle from 
measured positions (dots) at discrete intervals. (a) Position of the 
particle at seven times during the deformation. (b) Least-squares 
best-fit with a fourth-order polynomial in x 1 and x2 directions separ- 
ately, describing the position, x, as a function of time, t. It is possible 
to assign a velocity vector v to the marker-particle at any time. This 

velocity vector lies at a tangent to the inferred movement path. 

essentially of the same form, the method is the same 
for both deformation and flow, and yields either F - I 
and d, or L and 1. These are calculated for regularly 
distributed points in the field of interest, for instance 
the nodes of a rectangular grid. 

To solve equations (2) and (3) for a node, defor- 
mation has to be treated as having been homogeneous 
in a small area around that node so that small-scale 
inhomogeneities are neglected. These equations can 
then be solved exactly with three data points (marker 
particles) that lie in the area near the node. Using 
more data points over-determines the solution and a 
least-squares best-fit method has to be used. The 
advantage of the latter is that the effect of digitizing 
errors is subdued. The program therefore uses at least 
four data points, which have to be distributed around 
the node, to calculate F and d or L and l, by solving 
equation (2) or (3). The maximum area for which 
deformation is treated as homogeneous is defined 
interactively by the user. If one uses all data points one 
gets the bulk F and d, or L and l (Mancktelow 1991) 
(Fig. 3). 

If the area is too small, not enough data points will 

o fin!te strain ratio j ~  

(b) 

2 . 0 0 '  

1 .75  

1.50' 

1 .25  

1.00' 

0.75 

-4 
2.10 

-4 
1-10 

-4 
-1.10 

Progressive deformation in analogue models 407 

10 20 30 40 50 60 

Time (minutes) 

o strain rate (s-b 
[] area change rate (s l )  

0 10 20 30 40 50 60 

Time (minutes) 

Fig. 3. Bulk flow and finite strain in the norcamphor experiment 
shown in Fig. l,  calculated by interpolating velocity and displacement 
vectors of all marker particles. The marker particles occupied a 
region of approximately 3.5 × 2.5 mm z, which is about 10% of the 
whole area of the specimen. (a) Finite strain ratio and finite area 
change as a function of time. There is a significant loss in area 
(-~18%), probably caused by thickening of the specimen. (b) Strain 
rate and area change rate as a function of time. Note that the strain 
rate changes with time, because of strain localization either inside or 

outside the region occupied by the marker particles. 
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lie in the area and if the area is set too large, defor- 
mation cannot be treated as having been homogeneous 
and the method cannot be used. However,  if these 
requirements are met,  the program solves equation (2) 
or (3) and after all nodes have been dealt with, F and d 
or L and I are known for the nodes of the grid. 

( a )  - 

Error reduction 

The resulting tensor and vector have certain errors, 
caused by: (1) errors in the digitized positions of 
marker particles or measurement-errors;  and (2) 
heterogeneity of deformation around the grid node. 
The treatment of deformation in the area occupied by 
four marker  particles as having been homogeneous is 
only approximately valid if this area is small (and thus 
the density of marker particles high) relative to the 
deformation gradient. However,  when the marker- 
particle density is high, the errors in determining the 
marker positions become relatively more important. 
The density of marker particles should therefore be 
adjusted to the accuracy of measurement of their posi- 
tions. In practice there will always be a certain error in 
the interpolated tensors and vectors. These errors will 
multiply when deformation-parameters are calculated 
from the tensors. 

Data can be enhanced by using the fact that ana- 
logue experiments are carried out in thin samples be- 
tween stiff glass plates and that the analogue materials 
are practically incompressible. This information is not 
used in the calculations described above. If the experi- 
ment is exactly plane-strain, the area change in the 
plane of measurement should always be zero. In most 
cases however the whole sample will flatten or thicken 
somewhat. Area change will vary gradually over the 
sample or even be constant. One can now iteratively 
adjust d or v of each grid node to fulfil the requirement 
of homogeneous area change for a small area around 
the grid node. Now F or L can be recalculated using d 
or v of the surrounding grid nodes. An example of the 
effect of this improvement is given in Fig. 4. One 
should note that this enhancement may only be carried 
out if there is reason to believe that area changes vary 
only gradually. When, for instance, grain-boundary 
diffusion or pressure solution are the deformation 
mechanisms, this is clearly not the case (Ree personal 
communication). 

Vorticity and spin 

A special problem in kinematic analysis is the dis- 
tinction between vorticity (W) and spin (S) in progress- 
ive deformation (Fig. 5). Vorticity is defined as the 
summed angular velocity of orthogonal material lines 
with respect to the instantaneous stretching axes 
(ISA), while spin is the rotation of ISA in an external 
reference frame (Means et al. 1980, Lister & Williams 
1983, Passchier 1986, 1987). From a position gradient 
tensor F representing a single deformation increment, 
it is possible to measure the rotation of two orthogonal 

- I - " r  I Y I (d) 
Fig. 4. The procedure to reposition grid nodes assuming incompres- 
sibility and using an initially square grid. (a) Actual situation before 
the strain increment. (b) Actual situation after the strain increment. 
(c) Interpolated grid with an obviously erroneous interpolation of the 
displacement of the middle grid node. Four neighbouring triangles 
are dashed according to their apparent area change: triangles I and II 
are too small, triangles III and IV too large. (d) The interpolated grid 
after repositioning (arrow) the middle grid node. in such a way that 

all four triangles have the same size. 

material lines with respect to an external reference 
frame. A sum of mean vorticity and spin can be deter- 
mined in this way if flow parameters do not change 
rapidly during the increment. To calculate mean spin, 
only the difference in orientation of ISA before and 
after the same deformation increment have to be 
measured. These can be derived from the velocity 
gradient tensors L at the beginning and at the end of 
the deformation increment. The method described in 
this paper allows for the calculation of both F and L, so 
in principle spin and vorticity can be distinguished. The 
procedure is as follows. 

For a deformation increment from t~ to t 2 at a certain 
point x (a grid node) one can calculate: 

(a) the local velocity gradient tensor, L(t,,x), at that 
point from the velocity vectors of the surrounding 
marker particles at tl; 

(b) the local position gradient tensor, F(t._t2,x), at 
that point for the whole deformation increment, using 
the displacement vectors of the surrounding marker 
particles, which gives the position x' of the material 
point x after the deformation increment; and 

(c) the local velocity gradient tensor, L(t2, X,), at point 
x' from the velocity vectors of the surrounding marker 
particles at t2. 

The ISA orientations at tl and t 2 are now known, and 
the orientation of the deformed material lines which 
were originally the ISA at tl, can be calculated and 
compared with the principal stretching directions 
(PSD), which are the long and short axes of the strain 
ellipsoid. Figure 5 shows the results for four cases with 
time-independent deformation. In case of zero vorti- 
city the PSD and the material lines which coincided 
with the ISA at tl should be identical at t2. When 
vorticity is non-zero these two do not coincide. 

Note that L(t,,~) and L(t2,x,) can only be calculated if 
the positions of marker particles were recorded at at 
least three stages of the deformation, and preferably 
more. If the positions are only known at two stages, 
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(a) S = 0 
Wk= 0 

(b) S = 0 
Wk=l 

(c) S = 23 ° 
W k  = 0 

(d) S = 23 o 

Wk- 1 

(1) (2) 
45 ° 

( ~ / 4 5 ~ i ~ 2 2 ° J  

( ~ / 4 5 ~ 2 2 2 ° ~  

Fig. 5. The analysis of spin (S) and vorticity (given as kinematic vorticity number  W k) for four cases: (a) S = 0 ° and Wk = 0. 
(b) S = 0 ° and Wk = I. (c) S = 23 ° and Wk = 0. (d) S = 23 ° and W k = 1. Column (1) shows the orientation of the ISA before 
the strain increment (t = q) ,  column (2) shows the same at the end of the strain increment (t = t2). Column (3) shows the 
finite deformation and rotation of an original square. Finite strain ellipses are drawn in the deformed squares, with the 
principal stretching directions (PSD) as dashed lines and the material lines that coincided with the ISA of t = to as solid lines. 

L(t~,x) and L(t2,x, ) will always be the same as both calcu- 
lated velocity vectors and displacement vectors will lie 
parallel. An inherent problem of vorticity and spin 
analysis is that the deformation increment must be 
large to accurately determine F, whereas it should be 
as small as possible to approximate time-independent 
flow parameters during the increment. This inevitably 

puts limitations on the accuracy of distinguishing be- 
tween spin and vorticity. 

Visualization 

O n c e  F a n d  d o r  L a n d  l a r e  c a l c u l a t e d  f o r  a l l  g r i d  

n o d e s ,  s e v e r a l  t e c h n i q u e s  t h a t  h a v e  b e e n  i n c o r p o r a t e d  

a i:,,,i,;-T-l:.- - b '~:: ~i : . . . .  .... (c)-,::. :. :. 

:l~-lig I.:[ I..[ [-1 I.-I.:r: .m.. '  ,, " :~ " " ~ "  ' : . " . .  " ' ~  

"t,:'1 I.I '1-::1..t'.ti'1 "1"1 "t." "'/. . " ~ ' / " l q ' l . L . ~ .  "-'!~--LdJ.~[_. 
' .1 I-.1"1 I IA 1 1,1:t I"F'I'H ./"l:i  z T I ' . ] S E 1 A 2 A A - ' / . ~  "'11'.lq-~ 

1 T ' l ' l ' l  I I I ' . l ' . ' t  I I '"J - '12  ["1':1.  " " . " "'.A" - ~ [ ' 1 1 '  
' I r  I : l - I l l l - I - l . I -  - .  - t - I . ,  • : .  - .  " 1 q t  : I - [ 1  

[ : l . e l - . i . i  L " I . ' I . ~  I . I . ' 4 . . t  ~ . . . ' . . " . .  . o .  : " ' . "  : ." - H ~ , . , , ,  
T:I ' L I "  "- " " -...." ,-+-q--+-+~b-~-g-~. I. VF~..~.." .4W-L-l.&i 
. " .  , . .  - ..- " .~.t._LL...' .LJ ',:~: --~-'-'~...... ' .~.~-L' ~_r r 

Legend of  Rf-contours: 
- -  1.25 
[ ]  1.50-1.75 
[ ]  1.75-2.0 
• 2.0-3.0 
• 3.0-4.0 
• >4.0 

(d) 

scale 

..i 

L" :" i  : ~''" ' 

( e ) ~  

Fig. 6. Plots showing finite deformation parameters for the norcamphor  experiment shown in Fig. 1. The five solid dots 
are the marker  particles highlighted in Fig. 1. (a)-(c) Deformed grids at t = 0, 33 and 55 min. Small dots represent  marker  
particles. (d) & (e) Finite strain ratio contours at t = 33 and 55 min. (f) & (g) Finite strain ellipses at t = 33 and 55 rain. 
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(e) 
Fig. 7. Plots showing flow parameters for the norcamphor experiment shown in Fig. 1 at t = 33 min. The five solid dots 
are the marker particles highlighted in Fig. 1. (a) Contours of strain rate. (b) Contours of kinematic vorticity numberWk, 
uncorrected for spin. (c) Plot of velocity vectors. (d) Plot of ISA orientation. (e) Approximate paths of all markers from 

t = 0 to t = 55 min. The paths are approximated with fourth-order polynomials. 

into the program can be used for displaying the defor- 
mation field. Examples are given in Figs. 6 and 7. 

The first display mode is a 'deformed grid', which is 
probably the best way to visualize finite deformation 
(Figs. 6a-c). This grid is constructed by adding the 
displacement d of each grid node to its original position 
and linking all nodes with straight lines. A number of 
kinematic parameters such as vorticity and stretching 
rate can be calculated from the tensors F and L (Pas- 
schier 1988a, Means 1990) which are best displayed in 
the form of contour-plots (Figs. 6d & e and 7a & b). 
Strain ellipses show the magnitude of finite strain and 
the direction of the principal stretching directions 
(Figs. 6f & g). Plots of velocity vectors or displacement 
vectors demonstrate the flow pattern in the material 
(Fig. 7c). This can also be done by drawing the paths of 
all marker particles (Fig. 7e). It can also be useful to 
plot the orientations of ISA at a certain time (Fig. 7d). 
Plots of these orientations can be a tool to recognize 
inhomogeneities in vorticity and/or spin. 

Grain-boundary migration 

Analogue experiments are well suited to study grain- 
boundary migration (Jessell 1986, Urai et al. 1986, 
Wilson 1986, Urai 1987, Means & Ree 1988). During 
deformation grain boundaries will change their shape 
due to two different processes: (a) because grain 
boundaries move passively with the deforming material 
(strain); and (b) because they migrate through the 
material (grain-boundary migration). At first sight 
these two modes of shape change of grain boundaries 
are often indistinguishable. To determine actual 
amount of grain-boundary migration the following 
method can be used (Fig. 8). 

(a) 

i ° °  

(b) 

scale 
--250~tm ~- 

I (c) 
Fig. 8. Example of the analysis of grain-boundary migration, taken 
from an experiment with octachloropropane (C3C18) , deformed under 

5 1 pure shear at an applied strain rate of 2 × 10- s-  and a temperature of 
75°C. (a) Digitized grain boundaries at beginning of strain increment (t 
= 0 min). (b) Digitized grain boundaries at t = 72 rain after strain 
increment of about 8% shortening in an E - W  direction. (c) Original 
grain boundaries (t = 0 min) are repositioned as passive markers, 
according to the deformation field calculated with the marker particles, 
and superposed on the actual grain boundaries at t = 72 rain. The areas 
through which grain boundaries have migrated are shaded. Note three 

neigbbour-switching events (circles). 
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Grain boundaries before and after a deformation 
increment are digitized in the form of points (nodes) 
linked by straight lines (Figs. 8a & b). Just as F and d 
could be calculated for nodes on a grid, they can be 
calculated for the nodes on grain boundaries. 'De- 
formed grain boundaries' can be constructed in the 
same way as a 'deformed grid'. The 'deformed grain 
boundaries' represent the grain boundaries after the 
deformation increment if no grain-boundary migration 
has taken place. The difference between the actual 
position of grain boundaries after deformation and the 
calculated 'deformed grain boundaries' represents the 
actual grain-boundary migration (shaded areas in Fig. 
8c). 

CONCLUSIONS 

Although analogue experiments seem to produce an 
'ideal' data set where 'everything is known', it is still 
surprisingly difficult to calculate some parameters of 
deformation and flow. This is due to the inherent prob- 
lems in the determination of the instantaneous move- 
ment of particles, in the recognition of a material point 
and in the errors in determining its position. The 
method described here allows us to analyse such a data 
set and to extract as much information as possible. The 
use of functions describing positions of marker par- 
ticles as a function of time, makes it possible to deter- 
mine the flow field in the deforming material, instead 
of only the finite deformation. 
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APPENDIX 

Computer program 

All routines described in this paper are combined into two compat- 
ible and fully menu-driven programs, implemented for Apple 
Macintosh computers. The programs are written in C. Full colour 
screen and about 1 Mb of RAM are recommended. All output is in 
TEXT- or PICT-format which is compatible with most graphics-, 
spreadsheet- and word-processing applications available for Apple 
Macintosh computers. The program occupies 214 kb and can be 
obtained free from the authors. Please include a 3.5" floppy disk. A 
manual is in preparation. 


